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This paper proposes an optimal design method of conductor shape in an electrostatic system by using the continuum shape sensitivity 

analysis. The continuum sensitivity formula for conductor shape with the Dirichlet boundary condition is analytically derived using the 
material derivative concept of continuum mechanics and the adjoint variable technique. The geometry change of the conductor surface 
is determined by the velocity field from the continuum sensitivity formula and it is expressed by the level set method. A simple numerical 
example is tested to show usefulness of the proposed method. 
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I. INTRODUCTION 

N most of electrostatic systems, voltage sources are applied to 
conductor electrodes and the distribution of voltage and 

electric field inside the system is determined by the conductor 
geometry. So, the desired field distribution or the required 
performance in the electrostatic system can be obtained by 
optimizing the conductor geometry. For example, the field 
intensity near the electrode is alleviated to lower possibility of 
the electrical breakdown in high-voltage systems [1]. In a case 
of dielectrophoresis application, a non-uniform electric field is 
generated to guide dielectric particles in an intended direction 
[2]. 

In the boundary value problems of electrostatic system, the 
Dirichlet boundary condition is imposed on the conductor 
surface to analyze the field distribution. The geometry of the 
boundary conductor can be an arbitrary shape to give a desired 
field distribution.  That is, because the design problem of the 
conductor boundary is a shape design problem, its design 
variable is not the size but the shape. Therefore, an optimization 
method based on the shape sensitivity analysis is suitable for 
this design problem. In particular, the continuum sensitivity 
analysis has some advantages for efficient optimization process. 

Most of the continuum sensitivity analyses for electrostatic 
systems have been applied to the shape design of the material 
interface between different dielectrics [3], [4]. In this paper, the 
continuum sensitivity analysis is also employed to derive 3 
dimensional shape sensitivity formula for the Dirichlet 
boundary deformation. The derivation procedure is based on the 
material derivative concept of continuum mechanics and the 
adjoint variable technique. The objective function is arbitrary 
function of voltage and field, which is defined in a region inside 
the system. Since the derived sensitivity formula is in a closed 
form, its numerical implementation is relatively simple and its 
numerical values is accurate. In addition, numerical calculation 
the sensitivity formula of the state and adjoint variables does 
not depend on the numerical analysis method.  

The level set method is used to easily deal with the shape 
evolutions during the design process. The state and the adjoint 
variables are numerically calculated using the finite element 
method and are used for calculation of the velocity field for the 

optimization process. In this digest, a simple numerical 
example is tested to show usefulness of the proposed method. 

II. DERIVATION OF CONTINUUM SENSITIVITY FORMULA 

An electrostatic system with the conductor boundary is 
shown in Fig. 1, where the boundary of domain r p     

is 0   and 1   with the Dirichlet and homogeneous Neumann 

conditions, respectively. There,    is the permittivity and n   is 
the unit normal vector. The objective function is defined as a 
regional integral of the electric potential V  and the field E  as 
follows: 
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where g   is any differentiable function and m p   is the 

characteristic function for integral region of p  . The state 

equation is a kind of the equality constraint in this optimization. 
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In (2), (3) and (4),   is the space charge density,   is the space 

of admissible state variable, and the upper bar denotes the test 
function of corresponding equation. The state equation (2) is 
incorporated in the objective function (1) to give an augmented 
objective function. 
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Fig. 1.  Electrostatic system of Dirichlet conductor boundary problem. 
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The material derivative of the augmented objective function (5) 
is used to derive the shape sensitivity. 

G F l( ) a( , ) .V V V V        (6) 

To express (6) in terms of velocity field, an adjoint variable 
equation is introduced. 
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where   is the adjoint variable, and the subscripts V  and E  
indicate the partial derivatives with respect to V  and E . After 
some mathematical manipulations with (2) and (7), the shape 
sensitivity formula for the Dirichlet boundary deformation is 
derived as follows: 

0
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where V   is the velocity on the conductor boundary and the 
subscript n  denotes the normal component of the variable. If 
the velocity for the boundary deformation is taken as (9), since 
the value of the sensitivity is always negative, it can be applied 
to the minimization problem. 

V ( ) ( )  n n nE V E   (9) 

The shape evolution during the optimization process is ex-
pressed by using the level set equation [5]. 
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where  is the level set function and t  is the time. The level set 

method and the velocity field (9) from the continuum sensitivity 
analysis are coupled by substituting (9) into (10). The coupling 
transforms the optimization process into a transient analysis.  

III. NUMERICAL TEST 

Fig. 2 shows a simple test model with the inner circular anode 
and the outer filleted rectangular cathode. The design objective 
is to find the optimal shape of the cathode for a uniform field 
distribution on p  . In fact, the exact optimal shape of this 

simple design problem is known to be a circular concentric to 
the anode. The objective function to be minimized is taken as 

 2
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where 0E  is the desired field whose intensity is constant in p . 

The adjoint equation for the objective function (11) is as follows: 
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In the optimization process of Fig. 3, the cathode surface is 
gradually evolved with time and finally it arrives to the 
expected circular shape. The objective function in Fig. 4 
converges to the zero value after 20 seconds, where the optimal 
design is obtained for the uniform electric field on p . 

Detailed derivation procedure of the shape sensitivity 
formula and more numerical examples will be presented in the 
full paper. 

 
Fig. 2.  Numerical test model for shape optimization of conductor surface. 

 

  
Fig. 3.  Evolution of cathode shape during design process. 

 

  
Fig. 4.  Evolution of objective function during design process. 
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